13 research outputs found

    Realizing a new paradigm in radiation therapy treatment planning

    Get PDF
    This thesis investigates the feasibility of a new IMRT planning paradigm called Interactive Dose Shaping (IDS). The IDS paradigm enables the therapist to directly impose local dose features into the therapy plan. In contrast to the conventional IMRT planning approach, IDS does not employ an objective function to drive an iterative optimization procedure. In the first part of this work, the conventional IMRT plan optimization method is investigated. Concepts for a near-optimal implementation of the planning problem are provided. The second part of this work introduces the IDS concept. It is designed to overcome clinical drawbacks of the conventional method on the one hand and to provide interactive planning strategies which exploit the full potential of modern high-performance computer hardware on the other hand. The realization of the IDS concept consists of three main parts. (1)A two-step Dose Variation and Recovery (DVR) strategy which imposes localized plan features and recovers for unintentional plan modifications elsewhere. (2)A new dose calculation method (3)The design of an IDS planning framework which provides a powerful graphical user interface. It could be shown that the IDS paradigm is able to reproduce conventionally optimized therapy plans and that the IDS concepts can be realized in real-time

    Physically constrained voxel-based penalty adaptation for ultra-fast IMRT planning

    No full text
    Conventional treatment planning in intensity-modulated radiation therapy (IMRT) is a trial-and-error process that usually involves tedious tweaking of optimization parameters. Here, we present an algorithm that automates part of this process, in particular the adaptation of voxel-based penalties within normal tissue. Thereby, the proposed algorithm explicitly considers a priori known physical limitations of photon irradiation. The efficacy of the developed algorithm is assessed during treatment planning studies comprising 16 prostate and 5 head and neck cases. We study the eradication of hot spots in the normal tissue, effects on target coverage and target conformity, as well as selected dose volume points for organs at risk. The potential of the proposed method to generate class solutions for the two indications is investigated. Run-times of the algorithms are reported. Physically constrained voxel-based penalty adaptation is an adequate means to automatically detect and eradicate hot-spots during IMRT planning while maintaining target coverage and conformity. Negative effects on organs at risk are comparably small and restricted to lower doses. Using physically constrained voxel-based penalty adaptation, it was possible to improve the generation of class solutions for both indications. Considering the reported run-times of less than 20 s, physically constrained voxel-based penalty adaptation has the potential to reduce the clinical workload during planning and automated treatment plan generation in the long run, facilitating adaptive radiation treatments

    Towards Real Time Radiotherapy Simulation

    No full text
    We propose a novel reconfigurable hardware architecture to implement Monte Carlo based simulation of physical dose accumulation for intensity-modulated adaptive radiotherapy. The long term goal of our effort is to provide accurate dose calculation in real-time during patient treatment. This will allow wider adoption of personalised patient therapies which has the potential to significantly reduce dose exposure to the patient as well as shorten treatment and greatly reduce costs. The proposed architecture exploits the inherent parallelism of Monte Carlo simulations to perform domain decomposition and provide high resolution simulation without being limited by on-chip memory capacity. We present our architecture in detail and provide a performance model to estimate execution time, hardware area and bandwidth utilisation. Finally, we evaluate our architecture on a Xilinx VU9P platform as well as the Xilinx Alveo U250 and show that three VU9P based cards or two Alevo U250s are sufficient to meet our real time target of 100 million randomly generated particle histories per second.</p

    Towards real-time photon Monte Carlo dose calculation in the cloud

    Get PDF
    Near real-time application of Monte Carlo (MC) dose calculation in clinic and research is hindered by the long computational runtimes of established software. Currently, fast MC software solutions are available utilising accelerators such as graphical processing units (GPUs) or clusters based on central processing units (CPUs). Both platforms are expensive in terms of purchase costs and maintenance and, in case of the GPU, provide only limited scalability. In this work we propose a cloud-based MC solution, which offers high scalability of accurate photon dose calculations. The MC simulations run on a private virtual supercomputer that is formed in the cloud. Computational resources can be provisioned dynamically at low cost without upfront investment in expensive hardware. A client-server software solution has been developed which controls the simulations and transports data to and from the cloud efficiently and securely. The client application integrates seamlessly into a treatment planning system. It runs the MC simulation workflow automatically and securely exchanges simulation data with the server side application that controls the virtual supercomputer. Advanced encryption standards were used to add an additional security layer, which encrypts and decrypts patient data on-the-fly at the processor register level. We could show that our cloud-based MC framework enables near real-time dose computation. It delivers excellent linear scaling for high-resolution datasets with absolute runtimes of 1.1 seconds to 10.9 seconds for simulating a clinical prostate and liver case up to 1% statistical uncertainty. The computation runtimes include the transportation of data to and from the cloud as well as process scheduling and synchronisation overhead. Cloud-based MC simulations offer a fast, affordable and easily accessible alternative for near real-time accurate dose calculations to currently used GPU or cluster solutions

    Physically constrained voxel-based penalty adaptation for ultra-fast IMRT planning

    Get PDF
    Conventional treatment planning in intensity-modulated radiation therapy (IMRT) is a trial-and-error process that usually involves tedious tweaking of optimization parameters. Here, we present an algorithm that automates part of this process, in particular the adaptation of voxel-based penalties within normal tissue. Thereby, the proposed algorithm explicitly considers a priori known physical limitations of photon irradiation. The efficacy of the developed algorithm is assessed during treatment planning studies comprising 16 prostate and 5 head and neck cases. We study the eradication of hot spots in the normal tissue, effects on target coverage and target conformity, as well as selected dose volume points for organs at risk. The potential of the proposed method to generate class solutions for the two indications is investigated. Run-times of the algorithms are reported. Physically constrained voxel-based penalty adaptation is an adequate means to automatically detect and eradicate hot-spots during IMRT planning while maintaining target coverage and conformity. Negative effects on organs at risk are comparably small and restricted to lower doses. Using physically constrained voxel-based penalty adaptation, it was possible to improve the generation of class solutions for both indications. Considering the reported run-times of less than 20 s, physically constrained voxel-based penalty adaptation has the potential to reduce the clinical workload during planning and automated treatment plan generation in the long run, facilitating adaptive radiation treatments
    corecore